Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Acta Physiologica Sinica ; (6): 475-485, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981022

RESUMO

Pain is a multi-dimensional emotional experience, and pain sensation and pain emotion are the two main components. As for pain, previous studies only focused on a certain link of the pain transmission pathway or a certain key brain region, and there is a lack of evidence that connectivity of brain regions is involved in pain or pain regulation in the overall state. The establishment of new experimental tools and techniques has brought light to the study of neural pathways of pain sensation and pain emotion. In this paper, the structure and functional basis of the neural pathways involved in the formation of pain sensation and the regulation of pain emotion in the nervous system above the spinal cord level, including thalamus, amygdala, midbrain periaqueductal gray (PAG), parabrachial nucleus (PB) and medial prefrontal cortex (mPFC), are reviewed in recent years, providing clues for the in-depth study of pain.


Assuntos
Humanos , Dor , Vias Neurais/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Encéfalo , Medula Espinal/fisiologia , Imageamento por Ressonância Magnética
2.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 42(1): 6-13, Jan.-Feb. 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055355

RESUMO

Objective: To test the feasibility and to present preliminary results of a neuroimaging protocol to evaluate adolescent depression in a middle-income setting. Methods: We assessed psychotropic medication-free adolescents (age range 14-16 years) with a diagnosis of major depressive disorder (MDD). Participants underwent a comprehensive clinical evaluation and both structural and functional magnetic resonance imaging (fMRI). In this pilot study, a preliminary single-group analysis of resting-state fMRI (rs-fMRI) data was performed, with a focus on the default mode network (DMN), cognitive control network (CCN), and salience network (SN). Results: The sample included 29 adolescents with MDD (mean age 16.01, SD 0.78) who completed the protocol. Only two participants were excluded due to MRI quality issues (head movement), and were not included in the analyses. The scans showed significant connectivity between the medial prefrontal cortex and posterior cingulate cortex (DMN), the ACC and anterior insula (SN), and the lateral prefrontal cortex and dorsal parietal cortex (CCN). Conclusion: We demonstrated the feasibility of implementing a complex neuroimaging protocol in a middle-income country. Further, our preliminary rs-fMRI data revealed patterns of resting-state connectivity consistent with prior research performed in adolescents from high-income countries.


Assuntos
Humanos , Masculino , Adolescente , Imageamento por Ressonância Magnética/métodos , Transtorno Depressivo Maior/diagnóstico por imagem , Neuroimagem/métodos , Controle de Qualidade , Fatores Socioeconômicos , Brasil , Córtex Cerebral/diagnóstico por imagem , Estudos de Viabilidade , Inquéritos e Questionários , Reprodutibilidade dos Testes , Transtorno Depressivo Maior/fisiopatologia , Vias Neurais , Testes Neuropsicológicos
4.
Journal of Southern Medical University ; (12): 609-615, 2020.
Artigo em Chinês | WPRIM | ID: wpr-828872

RESUMO

OBJECTIVE@#To investigate the potential neural pathway connecting the nucleus accumbens (NAc) and the rostral ventrolateral medulla (RVLM), and whether the pathway participates in the regulation of cardiovascular function in a model rat of anorexia nervosa (AN).@*METHODS@#Rat models of AN were established by allowing voluntary activity in a running wheel with restricted feeding, with the rats having free access to normal chow without exercise as the control group. FluoroGold (FG) retrograde tracing method and multi-channel simultaneous recording technique were used to explore the possible pathway between the NAc and the RVLM.@*RESULTS@#The rats in AN group exhibited significantly reduced systolic blood pressure (SBP), mean arterial pressure (MAP) and heart rate (HR) with significantly increased discharge frequency of RVLM neurons in comparison with the control rats. After the injection of FG into the RVLM, retrograde labeled neurons were observed in the NAc of the rats in both the normal control and AN groups. In both groups, SBP and HR were significantly decreased in response to 400 μA electrical stimulation of the NAc accompanied by an obvious increase in the discharge frequency of the RVLM neurons; the diastolic blood pressure (DBP) and MAP were significantly lower in AN model rats than in the normal rats in response to the stimulation.@*CONCLUSIONS@#We successfully established a rat model of AN via hyperactivity and restricted feeding and confirm the presence of a neural pathway connecting the NAc and the RVLM. This pathway might participate in the regulation of cardiovascular function in AN model rats.


Assuntos
Animais , Ratos , Anorexia Nervosa , Pressão Sanguínea , Modelos Animais de Doenças , Bulbo , Vias Neurais , Núcleo Accumbens , Ratos Sprague-Dawley
5.
Arq. neuropsiquiatr ; 77(9): 672-674, Sept. 2019. graf
Artigo em Inglês | LILACS | ID: biblio-1038749

RESUMO

ABSTRACT Alice in Wonderland syndrome (AIWS) is a paroxysmal, perceptual, visual and somesthetic disorder that can be found in patients with migraine, epilepsy, cerebrovascular disease or infections. The condition is relatively rare and unique in its hallucinatory characteristics. Objective: To discuss the potential pathways involved in AIWS. Interest in this subject arose from a patient seen at our service, in which dysmetropsia of body image was reported by the patient, when she saw it in her son. Methods: We reviewed and discussed the medical literature on reported patients with AIWS, possible anatomical pathways involved and functional imaging studies. Results: A complex neural network including the right temporoparietal junction, secondary somatosensory cortex, premotor cortex, right posterior insula, and primary and extrastriate visual cortical regions seem to be involved in AIWS to varying degrees. Conclusions: AIWS is a very complex condition that typically has been described as isolated cases or series of cases.


RESUMO Síndrome de Alice no País das Maravilhas (SAPM) é uma condição paroxística visual perceptiva e somestésica que pode ser encontrada em pacientes com enxaqueca, epilepsia, doença cerebrovascular ou infecções. A condição é relativamente rara e tem características alucinatórias peculiares. Objetivo: Discutir as potenciais vias envolvidas na SAPM. O interesse pelo assunto surgiu com um caso de nosso serviço, onde a distropsia da imagem corporal foi relatada pela paciente, que via isto em seu filho. Métodos: Os autores revisaram e discutiram a literatura médica de casos relatados de SAPM, possíveis vias anatômicas envolvidas e estudos de imagem funcional. Resultados: Uma complexa rede neural incluindo junção temporoparietal direita, córtex somatossensitivo secundário, córtex pré-motor, região posterior da ínsula direita, e regiões do córtex visual primário e extra-estriatal têm diferentes graus de envolvimento na SAPM. Conclusão: SAPM é uma condição complexa que tipicamente foi descrita apenas com casos isolados ou séries de casos.


Assuntos
Humanos , Feminino , Idoso de 80 Anos ou mais , Síndrome de Alice no País das Maravilhas/patologia , Síndrome de Alice no País das Maravilhas/diagnóstico por imagem , Alucinações/patologia , Alucinações/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem/métodos , Cefaleia/patologia , Cefaleia/diagnóstico por imagem , Vias Neurais
6.
Rev. chil. cir ; 71(1): 15-21, feb. 2019. tab, ilus
Artigo em Espanhol | LILACS | ID: biblio-985373

RESUMO

Resumen Introducción: Conocer en detalle la inervación interna del músculo temporal humano permite realizar múltiples técnicas quirúrgicas y tratamientos de patologías que involucran al territorio craneofacial. Si bien en la literatura se ha descrito la inervación interna del músculo temporal humano basado en micro-disección directa, la técnica de tinción de Sihler es una herramienta ventajosa para el estudio anatómico ya que permite observar ramos nerviosos pequeños sin perder su relación tridimensional con las fibras musculares. Objetivo: Describir la distribución nerviosa al interior del músculo temporal humano en cadáveres al aplicar el método de Sihler y analizar su asociación anátomo quirúrgica. Materiales y Método: Ocho músculos temporales humanos previamente disecados fueron sometidos al método de tinción de Sihler. Cada una de las muestras se observó bajo lupa estereoscópica y transiluminación; finalmente para su descripción se dividió al músculo en tres regiones. Resultados: Se determinó la presencia de tres troncos nerviosos principales: el temporal profundo anterior, el temporal profundo medio y temporal profundo posterior, los que discurren de profundo a superficial. Además, se observaron ramos colaterales de menor calibre del nervio temporal profundo posterior que en forma de arco comunican las tres regiones del músculo. Conclusión: Se describió una distribución nerviosa interna común para los músculos estudiados en las tres dimensiones del espacio, conocimiento útil para innovar en terapias clínico-quirúrgicas del territorio craneofacial.


Introduction: Knowing in detail the inner innervation of the human temporal muscle allows to perform multiple surgical techniques and treatments of pathologies that involve the craniofacial territory. Although the internal innervation of the human temporal muscle based on direct microdissection has been described in the literature, the Sihler staining technique is an advantageous tool for anatomical study since it allows observing small nerve branches without losing its three-dimensional relationship with muscle fibers. Aim: To describe the nervous distribution within the human temporal muscle in cadavers by applying the Sihler method and analyzing its surgical anatomical association. Materials and Method: Eight previously dissected human temporal muscles were subjected to the Sihler staining method. Each one of the samples was observed under stereoscopic magnification and transillumination, finally for its description the muscle was divided into three regions. Results: The presence of three main nervous trunks was determined: the anterior deep temporal, the deep medium temporal and the posterior deep temporal, those that run from deep to superficial. In addition, collateral branches of lesser caliber of the posterior deep temporal nerve that in the form of an arc communicate the three regions of the muscle were observed. Conclusion: A common internal nervous distribution was described for the muscles studied in the three dimensions of space, useful knowledge to innovate in clinical-surgical therapies of the craniofacial territory.


Assuntos
Humanos , Músculo Temporal/fisiopatologia , Músculo Temporal/diagnóstico por imagem , Rede Nervosa , Músculo Temporal/cirurgia , Anormalidades Craniofaciais/patologia , Vias Neurais
7.
Journal of Neurogastroenterology and Motility ; : 423-435, 2019.
Artigo em Inglês | WPRIM | ID: wpr-765951

RESUMO

BACKGROUND/AIMS: Fecal incontinence (FI) is a prevalent condition among women. While biomechanical motor components have been thoroughly researched, anorectal sensory aspects are less known. We studied the pathophysiology of FI in community-dwelling women, specifically, the conduction through efferent/afferent neural pathways. METHODS: A cross-sectional study was conducted on 175 women with FI and 19 healthy volunteers. The functional/structural study included anorectal manometry/endoanal ultrasound. Neurophysiological studies including pudendal nerve terminal motor latency (PNTML) and sensory-evoked-potentials to anal/rectal stimulation (ASEP/RSEP) were conducted on all healthy volunteers and on 2 subgroups of 42 and 38 patients, respectively. RESULTS: The main conditions associated with FI were childbirth (79.00%) and coloproctological surgery (37.10%). Cleveland score was 11.39 ± 4.09. Anorectal manometry showed external anal sphincter and internal anal sphincter insufficiency in 82.85% and 44.00%, respectively. Sensitivity to rectal distension was impaired in 27.42%. Endoanal ultrasound showed tears in external anal sphincter (60.57%) and internal anal sphincter disruptions (34.80%). Abnormal anorectal sensory conduction was evidenced through ASEP and RSEP in 63.16% and 50.00% of patients, respectively, alongside reduced activation of brain cortex to anorectal stimulation. In contrast, PNTML was delayed in only 33.30%. Stools were loose/very loose in 56.70% of patients. CONCLUSIONS: Pathophysiology of FI in women is mainly associated with mechanical sphincter dysfunctions related to either muscle damage or, to a lesser extent, impaired efferent conduction at pudendal nerves. Impaired conduction through afferent anorectal pathways is also very prevalent in women with FI and may play an important role as a pathophysiological factor and as a potential therapeutic target.


Assuntos
Feminino , Humanos , Canal Anal , Encéfalo , Estudos Transversais , Potenciais Evocados , Incontinência Fecal , Voluntários Saudáveis , Manometria , Vias Neurais , Parto , Nervo Pudendo , Lágrimas , Ultrassonografia
8.
Neuroscience Bulletin ; (6): 369-377, 2019.
Artigo em Inglês | WPRIM | ID: wpr-775470

RESUMO

Immediate-early genes (IEGs) have long been used to visualize neural activations induced by sensory and behavioral stimuli. Recent advances in imaging techniques have made it possible to use endogenous IEG signals to visualize and discriminate neural ensembles activated by multiple stimuli, and to map whole-brain-scale neural activation at single-neuron resolution. In addition, a collection of IEG-dependent molecular tools has been developed that can be used to complement the labeling of endogenous IEG genes and, especially, to manipulate activated neural ensembles in order to reveal the circuits and mechanisms underlying different behaviors. Here, we review these techniques and tools in terms of their utility in studying functional neural circuits. In addition, we provide an experimental strategy to measure the signal-to-noise ratio of IEG-dependent molecular tools, for evaluating their suitability for investigating relevant circuits and behaviors.


Assuntos
Animais , Humanos , Encéfalo , Metabolismo , Perfilação da Expressão Gênica , Métodos , Genes Precoces , Imagem Molecular , Métodos , Vias Neurais , Metabolismo , Neurônios , Metabolismo , Razão Sinal-Ruído
9.
Neuroscience Bulletin ; (6): 315-324, 2019.
Artigo em Inglês | WPRIM | ID: wpr-775449

RESUMO

The thalamostriatal pathway is implicated in Parkinson's disease (PD); however, PD-related changes in the relationship between oscillatory activity in the centromedian-parafascicular complex (CM/Pf, or the Pf in rodents) and the dorsal striatum (DS) remain unclear. Therefore, we simultaneously recorded local field potentials (LFPs) in both the Pf and DS of hemiparkinsonian and control rats during epochs of rest or treadmill walking. The dopamine-lesioned rats showed increased LFP power in the beta band (12 Hz-35 Hz) in the Pf and DS during both epochs, but decreased LFP power in the delta (0.5 Hz-3 Hz) band in the Pf during rest epochs and in the DS during both epochs, compared to control rats. In addition, exaggerated low gamma (35 Hz-70 Hz) oscillations after dopamine loss were restricted to the Pf regardless of the behavioral state. Furthermore, enhanced synchronization of LFP oscillations was found between the Pf and DS after the dopamine lesion. Significant increases occurred in the mean coherence in both theta (3 Hz-7 Hz) and beta bands, and a significant increase was also noted in the phase coherence in the beta band between the Pf and DS during rest epochs. During the treadmill walking epochs, significant increases were found in both the alpha (7 Hz-12 Hz) and beta bands for two coherence measures. Collectively, dramatic changes in the relative LFP power and coherence in the thalamostriatal pathway may underlie the dysfunction of the basal ganglia-thalamocortical network circuits in PD, contributing to some of the motor and non-motor symptoms of the disease.


Assuntos
Animais , Masculino , Ondas Encefálicas , Fisiologia , Corpo Estriado , Sincronização Cortical , Fisiologia , Neurônios Dopaminérgicos , Fisiologia , Eletrocorticografia , Vias Neurais , Oxidopamina , Transtornos Parkinsonianos , Ratos Wistar , Núcleos Talâmicos , Caminhada , Fisiologia
10.
Neuroscience Bulletin ; (6): 447-460, 2019.
Artigo em Inglês | WPRIM | ID: wpr-775438

RESUMO

A deficit in spatial memory has been taken as an early predictor of Alzheimer's disease (AD) or mild cognitive impairment (MCI). The uncinate fasciculus (UF) is a long-range white-matter tract that connects the anterior temporal lobe with the orbitofrontal cortex (OFC) in primates. Previous studies have shown that the UF impairment associated with spatial memory deficits may be an important pathological change in aging and AD, but its exact role in spatial memory is not well understood. The pathway arising from the postrhinal cortex (POR) and projecting to the ventrolateral orbitofrontal cortex (vlOFC) performs most of the functions of the UF in rodents. Although the literature suggests an association between spatial memory and the regions connected by the POR-vlOFC pathway, the function of the pathway in spatial memory is relatively unknown. To further illuminate the function of the UF in spatial memory, we dissected the POR-vlOFC pathway in mice. We determined that the POR-vlOFC pathway is a glutamatergic structure, and that glutamatergic neurons in the POR regulate spatial memory retrieval. We also demonstrated that the POR-vlOFC pathway specifically transmits spatial information to participate in memory retrieval. These findings provide a deeper understanding of UF function and dysfunction related to disorders of memory, as in MCI and AD.


Assuntos
Animais , Masculino , Ácido Glutâmico , Fisiologia , Rememoração Mental , Fisiologia , Camundongos Endogâmicos C57BL , Vias Neurais , Biologia Celular , Fisiologia , Técnicas de Rastreamento Neuroanatômico , Neurônios , Fisiologia , Córtex Pré-Frontal , Biologia Celular , Fisiologia , Memória Espacial , Fisiologia , Lobo Temporal , Biologia Celular , Fisiologia
11.
Braz. j. med. biol. res ; 52(5): e8244, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1001520

RESUMO

This study aimed to explore the structural and functional characteristics of the neural network of resting-state brain activities in patients with amnestic mild cognitive impairment (aMCI) by functional magnetic resonance imaging (fMRI) technology. Resting state fMRI scanning was performed on 10 clinically diagnosed aMCI patients and 10 healthy volunteers, and the difference in the resting-state brain activities between aMCI patients and healthy volunteers was compared using the brain function network regional homogeneity (ReHo) analysis method. Results of the ReHo analysis of aMCI patients and healthy volunteers revealed that the ReHo value significantly increased in the posterior cingulate gyrus region, medial frontal lobe, medial cortex of the prefrontal lobe, and part of the parietal lobe. Compared with the normal elderlies, ReHo decreased in aMCI patients in the left temporal lobe (middle temporal gyrus and inferior temporal gyrus), left parahippocampal gyrus, occipital lobe, lingual gyrus, precuneus, and other regions while ReHo increased in regions of the right frontal lobe (inferior frontal gyrus), left superior temporal gyrus, precentral gyrus (frontal lobe), right thalamus, left fusiform gyrus, and other regions. In the resting state, there may be regional abnormalities in brain functional areas in aMCI patients, which may be associated with cognitive impairment.


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Encéfalo/fisiologia , Disfunção Cognitiva/fisiopatologia , Processamento de Imagem Assistida por Computador , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Disfunção Cognitiva/diagnóstico por imagem , Vias Neurais/fisiopatologia
12.
Neuroscience Bulletin ; (6): 438-448, 2018.
Artigo em Inglês | WPRIM | ID: wpr-777052

RESUMO

Diffusion-weighted magnetic resonance imaging (dMRI) is widely used to study white and gray matter (GM) micro-organization and structural connectivity in the brain. Super-resolution track-density imaging (TDI) is an image reconstruction method for dMRI data, which is capable of providing spatial resolution beyond the acquired data, as well as novel and meaningful anatomical contrast that cannot be obtained with conventional reconstruction methods. TDI has been used to reveal anatomical features in human and animal brains. In this study, we used short track TDI (stTDI), a variation of TDI with enhanced contrast for GM structures, to reconstruct direction-encoded color maps of fixed tree shrew brain. The results were compared with those obtained with the traditional diffusion tensor imaging (DTI) method. We demonstrated that fine microstructures in the tree shrew brain, such as Baillarger bands in the primary visual cortex and the longitudinal component of the mossy fibers within the hippocampal CA3 subfield, were observable with stTDI, but not with DTI reconstructions from the same dMRI data. The possible mechanisms underlying the enhanced GM contrast are discussed.


Assuntos
Animais , Masculino , Mapeamento Encefálico , Imagem de Tensor de Difusão , Métodos , Hipocampo , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador , Métodos , Vias Neurais , Diagnóstico por Imagem , Tupaiidae , Córtex Visual , Diagnóstico por Imagem
13.
Neuroscience Bulletin ; (6): 485-496, 2018.
Artigo em Inglês | WPRIM | ID: wpr-777034

RESUMO

The GABAergic neurons in the parafacial zone (PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus EnvA-ΔG-DsRed combined with a Cre/loxP gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain; and the intermediate reticular nucleus and medial vestibular nucleus (parvocellular part) in the pons and medulla. We also mapped the axonal projections of the PZ GABAergic neurons with adeno-associated virus, and defined the reciprocal connections of the PZ GABAergic neurons with their input and output nuclei. The newly-found inputs and outputs of the PZ were also listed compared with the literature. This cell-type-specific neuronal whole-brain mapping of the PZ GABAergic neurons may reveal the circuits underlying various functions such as sleep-wake regulation.


Assuntos
Animais , Camundongos , Axônios , Fisiologia , Encéfalo , Mapeamento Encefálico , Tronco Encefálico , Biologia Celular , Neurônios GABAérgicos , Fisiologia , Proteínas de Fluorescência Verde , Genética , Metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais , Fisiologia , Fator 1 de Elongação de Peptídeos , Genética , Metabolismo , Vírus da Raiva , Genética , Metabolismo , Transdução Genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores , Genética , Metabolismo
14.
Neuroscience Bulletin ; (6): 497-506, 2018.
Artigo em Inglês | WPRIM | ID: wpr-777033

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a common childhood neuropsychiatric disorder that has been linked to the dopaminergic system. This study aimed to investigate the effects of regulation of the dopamine D4 receptor (DRD4) on functional brain activity during the resting state in ADHD children using the methods of regional homogeneity (ReHo) and functional connectivity (FC). Resting-state functional magnetic resonance imaging data were analyzed in 49 children with ADHD. All participants were classified as either carriers of the DRD4 4-repeat/4-repeat (4R/4R) allele (n = 30) or the DRD4 2-repeat (2R) allele (n = 19). The results showed that participants with the DRD4 2R allele had decreased ReHo bilaterally in the posterior lobes of the cerebellum, while ReHo was increased in the left angular gyrus. Compared with participants carrying the DRD4 4R/4R allele, those with the DRD4 2R allele showed decreased FC to the left angular gyrus in the left striatum, right inferior frontal gyrus, and bilateral lobes of the cerebellum. The increased FC regions included the left superior frontal gyrus, medial frontal gyrus, and rectus gyrus. These data suggest that the DRD4 polymorphisms are associated with localized brain activity and specific functional connections, including abnormality in the frontal-striatal-cerebellar loop. Our study not only enhances the understanding of the correlation between the cerebellar lobes and ADHD, but also provides an imaging basis for explaining the neural mechanisms underlying ADHD in children.


Assuntos
Criança , Feminino , Humanos , Masculino , Transtorno do Deficit de Atenção com Hiperatividade , Diagnóstico por Imagem , Genética , Patologia , Encéfalo , Diagnóstico por Imagem , Cerebelo , Diagnóstico por Imagem , Corpo Estriado , Diagnóstico por Imagem , Lobo Frontal , Diagnóstico por Imagem , Genótipo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Repetições Minissatélites , Genética , Vias Neurais , Diagnóstico por Imagem , Oxigênio , Sangue , Receptores de Dopamina D4 , Genética , Metabolismo , Descanso
15.
Neuroscience Bulletin ; (6): 507-516, 2018.
Artigo em Inglês | WPRIM | ID: wpr-777029

RESUMO

The ZNF804A variant rs1344706 has consistently been associated with schizophrenia and plays a role in hippocampal-prefrontal functional connectivity during working memory. Whether the effect exists in the resting state and in patients with schizophrenia remains unclear. In this study, we investigated the ZNF804A polymorphism at rs1344706 in 92 schizophrenic patients and 99 healthy controls of Han Chinese descent, and used resting-state functional magnetic resonance imaging to explore the functional connectivity in the participants. We found a significant main effect of genotype on the resting-state functional connectivity (RSFC) between the hippocampus and the dorsolateral prefrontal cortex (DLPFC) in both schizophrenic patients and healthy controls. The homozygous ZNF804A rs1344706 genotype (AA) conferred a high risk of schizophrenia, and also exhibited significantly decreased resting functional coupling between the left hippocampus and right DLPFC (F(2,165) = 13.43, P < 0.001). The RSFC strength was also correlated with cognitive performance and the severity of psychosis in schizophrenia. The current findings identified the neural impact of the ZNF804A rs1344706 on hippocampal-prefrontal RSFC associated with schizophrenia.


Assuntos
Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Análise de Variância , Lateralidade Funcional , Genética , Genótipo , Hipocampo , Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador , Fatores de Transcrição Kruppel-Like , Genética , Imageamento por Ressonância Magnética , Vias Neurais , Diagnóstico por Imagem , Testes Neuropsicológicos , Oxigênio , Sangue , Polimorfismo de Nucleotídeo Único , Genética , Córtex Pré-Frontal , Diagnóstico por Imagem , Escalas de Graduação Psiquiátrica , Esquizofrenia , Diagnóstico por Imagem , Genética , Índice de Gravidade de Doença
16.
Neuroscience Bulletin ; (6): 647-658, 2018.
Artigo em Inglês | WPRIM | ID: wpr-775510

RESUMO

A number of studies have indicated that disorders of consciousness result from multifocal injuries as well as from the impaired functional and anatomical connectivity between various anterior forebrain regions. However, the specific causal mechanism linking these regions remains unclear. In this study, we used spectral dynamic causal modeling to assess how the effective connections (ECs) between various regions differ between individuals. Next, we used connectome-based predictive modeling to evaluate the performance of the ECs in predicting the clinical scores of DOC patients. We found increased ECs from the striatum to the globus pallidus as well as from the globus pallidus to the posterior cingulate cortex, and decreased ECs from the globus pallidus to the thalamus and from the medial prefrontal cortex to the striatum in DOC patients as compared to healthy controls. Prediction of the patients' outcome was effective using the negative ECs as features. In summary, the present study highlights a key role of the thalamo-basal ganglia-cortical loop in DOCs and supports the anterior forebrain mesocircuit hypothesis. Furthermore, EC could be potentially used to assess the consciousness level.


Assuntos
Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Teorema de Bayes , Conectoma , Transtornos da Consciência , Diagnóstico por Imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Vias Neurais , Diagnóstico por Imagem , Prognóstico , Prosencéfalo , Diagnóstico por Imagem
17.
Neuroscience Bulletin ; (6): 921-938, 2018.
Artigo em Inglês | WPRIM | ID: wpr-775495

RESUMO

Neurostimulation remarkably alleviates the symptoms in a variety of brain disorders by modulating the brain-wide network. However, how brain-wide effects on the direct and indirect pathways evoked by focal neurostimulation elicit therapeutic effects in an individual patient is unknown. Understanding this remains crucial for advancing neural circuit-based guidance to optimize candidate patient screening, pre-surgical target selection, and post-surgical parameter tuning. To address this issue, we propose a functional brain connectome-based modeling approach that simulates the spreading effects of stimulating different brain regions and quantifies the rectification of abnormal network topology in silico. We validated these analyses by pinpointing nuclei in the basal ganglia circuits as top-ranked targets for 43 local patients with Parkinson's disease and 90 patients from a public database. Individual connectome-based analysis demonstrated that the globus pallidus was the best choice for 21.1% and the subthalamic nucleus for 19.5% of patients. Down-regulation of functional connectivity (up to 12%) at these prioritized targets optimally maximized the therapeutic effects. Notably, the priority rank of the subthalamic nucleus significantly correlated with motor symptom severity (Unified Parkinson's Disease Rating Scale III) in the local cohort. These findings underscore the potential of neural network modeling for advancing personalized brain stimulation therapy, and warrant future experimental investigation to validate its clinical utility.


Assuntos
Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mapeamento Encefálico , Conectoma , Estimulação Encefálica Profunda , Métodos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Vias Neurais , Diagnóstico por Imagem , Fisiologia , Oxigênio , Sangue , Doença de Parkinson , Diagnóstico por Imagem , Patologia , Terapêutica , Curva ROC , Reino Unido
18.
Neuroscience Bulletin ; (6): 715-724, 2018.
Artigo em Inglês | WPRIM | ID: wpr-775494

RESUMO

Stroke at the acute stage is a major cause of disability in adults, and is associated with dysfunction of brain networks. However, the mechanisms underlying changes in brain connectivity in stroke are far from fully elucidated. In the present study, we investigated brain metabolism and metabolic connectivity in a rat ischemic stroke model of middle cerebral artery occlusion (MCAO) at the acute stage using F-fluorodeoxyglucose positron emission tomography. Voxel-wise analysis showed decreased metabolism mainly in the ipsilesional hemisphere, and increased metabolism mainly in the contralesional cerebellum. We used further metabolic connectivity analysis to explore the brain metabolic network in MCAO. Compared to sham controls, rats with MCAO showed most significantly reduced nodal and local efficiency in the ipsilesional striatum. In addition, the MCAO group showed decreased metabolic central connection of the ipsilesional striatum with the ipsilesional cerebellum, ipsilesional hippocampus, and bilateral hypothalamus. Taken together, the present study demonstrated abnormal metabolic connectivity in rats at the acute stage of ischemic stroke, which might provide insight into clinical research.


Assuntos
Animais , Masculino , Doença Aguda , Encéfalo , Diagnóstico por Imagem , Metabolismo , Mapeamento Encefálico , Modelos Animais de Doenças , Fluordesoxiglucose F18 , Glucose , Metabolismo , Infarto da Artéria Cerebral Média , Diagnóstico por Imagem , Metabolismo , Vias Neurais , Diagnóstico por Imagem , Metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Distribuição Aleatória , Ratos Sprague-Dawley
19.
Neuroscience Bulletin ; (6): 725-735, 2018.
Artigo em Inglês | WPRIM | ID: wpr-775493

RESUMO

An important and unresolved question is how human brain regions process information and interact with each other in intertemporal choice related to gains and losses. Using psychophysiological interaction and dynamic causal modeling analyses, we investigated the functional interactions between regions involved in the decision-making process while participants performed temporal discounting tasks in both the gains and losses domains. We found two distinct intrinsic valuation systems underlying temporal discounting in the gains and losses domains: gains were specifically evaluated in the medial regions, including the medial prefrontal and orbitofrontal cortices, and losses were evaluated in the lateral dorsolateral prefrontal cortex. In addition, immediate reward or punishment was found to modulate the functional interactions between the dorsolateral prefrontal cortex and distinct regions in both the gains and losses domains: in the gains domain, the mesolimbic regions; in the losses domain, the medial prefrontal cortex, anterior cingulate cortex, and insula. These findings suggest that intertemporal choice of gains and losses might involve distinct valuation systems, and more importantly, separate neural interactions may implement the intertemporal choices of gains and losses. These findings may provide a new biological perspective for understanding the neural mechanisms underlying intertemporal choice of gains and losses.


Assuntos
Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Encéfalo , Diagnóstico por Imagem , Fisiologia , Mapeamento Encefálico , Desvalorização pelo Atraso , Fisiologia , Imageamento por Ressonância Magnética , Vias Neurais , Diagnóstico por Imagem , Fisiologia , Testes Neuropsicológicos , Psicofísica , Recompensa
20.
Neuroscience Bulletin ; (6): 1105-1110, 2018.
Artigo em Inglês | WPRIM | ID: wpr-775478

RESUMO

Animals choose among sleep, courtship, and feeding behaviors based on the integration of both external sensory cues and internal states; such choices are essential for survival and reproduction. These competing behaviors are closely related and controlled by distinct neural circuits, but whether they are also regulated by shared neural nodes is unclear. Here, we investigated how a set of male-specific P1 neurons controls sleep, courtship, and feeding behaviors in Drosophila males. We found that mild activation of P1 neurons was sufficient to affect sleep, but not courtship or feeding, while stronger activation of P1 neurons labeled by four out of five independent drivers induced courtship, but only the driver that targeted the largest number of P1 neurons affected feeding. These results reveal a common neural node that affects sleep, courtship, and feeding in a threshold-dependent manner, and provide insights into how competing behaviors can be regulated by a shared neural node.


Assuntos
Animais , Masculino , Animais Geneticamente Modificados , Encéfalo , Biologia Celular , Corte , Drosophila , Proteínas de Drosophila , Genética , Metabolismo , Comportamento Alimentar , Fisiologia , Locomoção , Inibição Neural , Fisiologia , Vias Neurais , Fisiologia , Neurônios , Fisiologia , Fatores Sexuais , Sono , Fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA